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1Abstract – A review of techniques for modelling dispersive 
and nonlinear materials using the TLM method is presented. The 
materials are those commonly used in optics, although the 
methodology is directly transferable to microwave and lower 
frequencies. It is shown that use of the Duffing model for devices 
exhibiting both nonlinear and dispersive nature provides more 
physically meaningful results than those of a simple Kerr model.  
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I.   INTRODUCTION 
 

The behaviour of optical waves in nonlinear and dispersive 
materials has been the subject of intense investigations in 
recent years [1], driven by applications such as switching and 
bistability, optical limiting, pulse shaping, wavelength 
conversion and soliton propagation [2-5]. Time domain 
numerical analysis is widely used in electromagnetic 
modelling and seems well-suited to performing the complex 
simulations required by photonics devices based on nonlinear 
dispersive effects [6-8]. In this paper we develop models of 
various complexity for modelling dispersive and nonlinear 
dielectrics within the Transmission Line Modelling (TLM) [9] 
method. The models are developed, investigated and applied 
in one-dimension (1D), but can be extended to the three-
dimensional (3D) case.  

 
 

II.   LINEAR DISPERSIVE DIELECTRICS 
 

The propagation of signals in a linearly dispersive, 
absorptive medium is of significant interest in acoustics, wave 
propagation in plasma and dielectric media and in optical 
waveguides [10]. In this section, we develop a TLM model for 
a material with Lorentzian susceptibility. A Lorentzian 
material shows both normal and anomalous dispersion in the 
susceptibility. In TLM, open-circuit, short-circuit and matched 
stubs connected at nodes can be used to represent various 
material properties [9]. We represent the Lorentzian behaviour 
of the material susceptibility by using lumped components 
connected at the TLM nodes in the form of open-circuited, 
short-circuited and matched stubs, as shown in Fig.1. To 
confirm that the susceptibility behaviour obtained is indeed 
Lorentzian, we note that the Laplace transform of the 
equivalent capacitance Ceq(s) represented by this circuit is:  
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Therefore, if ∆l is the TLM cell size and χe(s) is the material 
susceptibility, Ceq(s) = ε0χe(s)∆l in TLM,  
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which represents a Lorentz material susceptibility, with the  

following equivalences:                           
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where ∆χe is the susceptibility contrast, ω0 is the resonant 
frequency and δ is the damping frequency of the Lorentzian 
material. These L, C and R values can be simulated in TLM 
using a series combination of a short-circuit stub, an open-
circuit stub and a matched stub at the nodes.  
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Fig.1. An equivalent circuit representation of Lorentzian 
susceptibility in TLM 

 
 
Using the above model, we simulate a Gaussian pulse 

propagation in a Lorentz material, and the results obtained are 
compared with those obtained using a Z-transform technique 



Mikrotalasna revija    Jun 2004. 
 

36 

[7]. The material properties are chosen as ∆χe = 1.435, ω0 = 
2π x 20 x 109rads-1, δ = 10-6ω0 as in [7]. The results obtained 
are shown in Fig.2 and clearly demonstrate the pulse 
broadening associated with material dispersion. These results 
are in precise agreement with those reported in [7]. 
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Fig.2. Electric field in the Lorentz material after  (a) 0.1 ns, and (b) 
0.2 ns 

 
 

III.  DOUBLE RESONANCE LORENTZ MODEL 
DIELECTRIC 

 
The modelling principles developed in section II are now 

extended to a multi-Lorentz material, i.e. one in which the 
susceptibility shows more than one resonant feature. The 
complex refractive index in this case is given by: 

2 2
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       (5) 

 
where ω is the frequency, ω0 and ω1 are the resonant 
frequencies, δ0 and δ1 are the damping frequencies, and b0 and 
b1 are constants given by the product of square of the resonant 
frequency and the static susceptibility. Representative material 
parameters are taken as those for a typical fluoride-type glass 
with visible and infrared resonance lines [10] of ω0= 1.7414 x 
1014 rads-1 and ω1= 9.1448 x 1015 rads-1. The frequency 
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Fig.3. Dispersion of the real and imaginary parts of the refractive 
index for a typical Fluoride-type glass 
 
dispersion of the real and imaginary parts of the complex 
refractive index is shown in Fig. 3. 

The response of the material to a Heaviside step function-
modulated sine wave excitation was simulated, as in [10]. A 
TLM cell size of 10-8m was used throughout. The time 
evolution of field profiles at various positions in the material 
are presented in Fig.4(a) for a signal angular frequency 
ω = 1.2 x 1014 rads-1, which lies below the first resonance 
frequency in the anomalous dispersion region, and in Fig.4(b)-
(d) for ω = 3 x 1014 rads-1 which lies just above the lower 
absorption band, near the lower end of the medium passband.  
All figures show the appearance of precursors, Brillouin and 
Sommerfield [10], before the propagating signal. Fig.4(b,c,d) 
shows how the precursors evolve along the distance and 
eventually dominate the signal, which in turn reduces in 
amplitude, as is typical for the above dispersive material. The 
results show excellent agreement with those obtained using a 
hybrid numerical-asymptotic code for the dispersive pulse 
calculations [10]. 

 
 

IV.   KERR MODEL FOR NONLINEAR DIELECTRIC 
 

In this section, a nonlinear frequency-independent dielectric 
susceptibility is modelled using the TLM method. The stub 
technique originally proposed in [11] is used, in which the 
nonlinearity is included in the model by updating the material 
properties at each time step. The nonlinearity considered is of 
Kerr type, i.e. the refractive index of the material varies with 
the instantaneous local intensity according to the relation: 

0 2n n n I= +                                             (6) 

where n is the total refractive index of the material, n0 is the 
linear refractive index, n2 is the nonlinearity coefficient and I 
is the local intensity of signal.  

In order to show the effectiveness and application of the 
method, a grating consisting of alternate layers of high and 
low linear index n0 of 2 ± 0.05 is analysed. Each layer is λm/4 
thick, where λm is the wavelength of the signal of frequency f0 
(taken here to be 300 THz) in a material whose linear  
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Fig.4. Field profile in a double-resonance Lorentz-model dielectric 
for a signal frequency of (a) ω of 1.2 x 1014 rads-1, and (b), (c), (d) 
field profile for ω of 3 x 1014 rads-1 

refractive index is 2. Such a structure is expected to have a 
transmission stopband, which is centred at the Bragg 
frequency f0, and whose width and sharpness depend on the 
linear index contrast and the total number of layers in the 
grating [2]. A positive Kerr nonlinearity is introduced in all 
the layers, i.e. n2  is always positive.  The value of n2 is fixed 
at 0.001 in normalised units reciprocal to those of I, which is, 
in turn, normalised to units of V2.  

The introduction of the Kerr nonlinearity into the structure 
has the effect of dynamically shifting the stopband  with the 
level of the applied signal. Since the average refractive index 
of the material now increases with the intensity, an 
instantaneous shift in the stopband  towards lower frequencies 
is expected with increasing intensity. If the signal is located  
in the stopband suitably close to the stopband-passband 
border, then this may give rise to self-switching and bistability 
in the nonlinear grating [5]. We explore this switching and 
bistability behaviour in the present section and observe the 
effect of (i) the number of layers in the grating, (ii) the 
frequency of the applied signal and (iii) the magnitude of the 
nonlinearity coefficient on the switching behaviour of the 
grating. 

In the simulations, a continuous sine wave is launched from 
free space as an excitation. For a given combination of the 
number of layers in the structure and nonlinearity coefficient, 
the signal frequency is chosen to lie towards the higher 
frequency end of the linear stopband. The applied signal 
intensity is gradually increased from a low to a high value. 
For each step of intensity, the output time history at a point in 
free space on the far end of the grating is recorded, and then, 
using an FFT, the intensity of this output signal at the desired 
frequency is determined. In this way a curve is plotted 
showing the output intensity as a function of input signal 
intensity (Figure 5(a)). It is observed from this curve that for 
low input intensity, the signal is still in the stopband, and the 
output intensity (i.e. the transmittance) is low. With increasing 
input intensity, the stopband  starts to move and eventually the 
signal is placed in the passband thus giving rise to a switching 
action, with transmittance close to unity and the device turned 
ON.  

These devices exhibit bistable operation, in which a single 
input intensity gives two different output intensities 
(transmittances). This can be seen on the hysteresis curve of 
Fig.5(b).  The hysteresis curve is obtained in a single TLM 
run starting from small input intensities when the signal 
frequency is still in the stopband. The input intensity is 
gradually increased in steps until the device is driven well into 
the ON state. The input intensity is then decreased in the same 
steps until the device reaches well within the OFF state. It is 
observed that the curve now traces out a hysteresis loop, 
Fig.5(b). 

Fig.5(c) shows that for signal frequencies which lie close to 
the top edge of the linear stopband, the switching is achieved 
for relatively lower signal intensities, and the width of the 
hysteresis curve obtained is smaller.  Fig.5(d) suggests that for 
a fewer number of layers in the grating, the jump in the output 
intensity after the grating switches ON takes place for higher 
input intensity. This behaviour reflects the observation that the 
linear stopband  is expected to be less sharp in this case.  
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Fig.5. Characteristics of a nonlinear grating, (a) switching, (b) 
bistable behaviour, (c) the effect of the frequency of the applied 
signal on the switching action, and (d) the effect of number of layers 
and the nonlinearity coefficient on the switching action 
 

Fig.5(d) also shows that an increase in the nonlinearity 
coefficient n2 makes the grating switch for a smaller input 
intensity. 
 

V.   DUFFING MODEL OF NONLINEARITY AND 
COMPARISON WITH THE KERR MODEL 

 
 
All the models described in the previous sections are 

developed for either purely dispersive or nonlinear materials. 
In many modern applications optical waves propagate through 
materials that exhibit both dispersive and nonlinear behaviour, 
and therefore a more general model is desired. However, if the 
simple stub technique is used to simulate both, for example 
Lorenzian dispersive material and Kerr nonlinearity, then the 
TLM model becomes unstable. It has been suggested that the 
Duffing model [12] can be used to simulate nonlinear 
dispersive dielectrics. The Duffing model [12] represents the 
nonlinearity as a polarisation-driven phenomenon and thus is 
more physically realistic than the Kerr model. This model has 
been previously used to simulate nonlinear Lorentz materials 
[7] and to simulate chaotic dynamics in nonlinear dispersive 
dielectric materials [13]. Both models have been implemented 
using a Z-transform technique [7], which has been shown to 
be a stable method that can be used to model complex 
materials properties [6, 7, 13].  

In this section we compare results obtained using TLM 
implementations of the Kerr and Duffing nonlinearity models, 
basing the simulations around an all-optical limiter device. 
The all-optical limiter will first be modelled using the Kerr 
model for nonlinearity and results compared with those given 
in [14]. The equivalent Duffing model for the all-optical 
limiter will then be derived for both non-dispersive and 
dispersive case.  

The Duffing polarisation equation is given by: 
2

2 2 2
0 0 02

( ) ( )2 (1 ( )) ( ) ( )e
P t P t P t P t E t

tt
δ ω α ε χ ω∂ ∂+ + + = ∆

∂∂
     (7) 

Here, P is the polarisation, E is the electric field, α is the 
nonlinearity coefficient, ω0 is the resonant frequency and ∆χe 
is the susceptibility contrast. For the non-dispersive nonlinear 
case,  (7) reduces to:   

3
0 eP P Eα ε χ+ = ∆                                       (8) 

The corresponding Kerr polarisation equation is  
2

0 0 0 0 2( 1) 2P n E n n IEε ε= − +                              (9) 

where n0 is the linear index, n2 is the nonlinearity coefficient 
and I is the intensity of light. To ensure that both the Kerr and 
Duffing models have similar responses for small signals, the 
relation between the Kerr and Duffing models is derived as: 

20
2 3
0 0

2
2e

n n
α

ε χ η
= −

∆
                                     (10) 

where η0 is the characteristic impedance of free space. The 
polarisation behaviour w.r.t. electric field for positive and 
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Fig. 6. (a) The polarisation behaviour of the Kerr and Duffing models 
obtained from the polarisation equations, (b) The small signal range 
enlarged 

 
negative Kerr nonlinearity using Kerr and Duffing models is 
plotted using eqs.(8,9) in Fig.6(a,b). The parameters are n0 = 
1.5, n2 = 2.5 x 10-16 and ∆χe = 1.25. The equivalence 
between the Kerr and Duffing models is valid for small input 
signals as is detailed in Fig.6(b). Fig.6(a) also shows the 
bistable nature of the Kerr model for negative nonlinearity and 
Duffing model for positive Kerr nonlinearity. This will be 
discussed further  in section VI.  

Having established the material models, an optical limiter 
structure is simulated. This is a grating similar to that studied 
in section IV, but with a different refractive index profile. The 
alternate layers in the present case have the same linear 
refractive index of 1.5. In addition, the alternate layers have 
positive and negative Kerr nonlinearity coefficients, such that 
the index of alternate layers for the Kerr model is given by 

0 2n n n I= ±                                          (11) 

where n2 in this case is now 2.5 x 10-16 m2/W. Such a grating 
passes a low intensity signal at the Bragg frequency through 
it, without significant reflection. However, for larger 
intensities, an instantaneous stopband begins to appear, whose 
centre frequency remains fixed at the Bragg frequency and 
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Fig.7. (a) Kerr and Duffing models for nonlinear non-dispersive 
grating considering only the fundamental frequency at the output, (b) 
including higher harmonics generated. Also shown is the result of an 
harmonic analysis [14]. 

 
whose width increases with increasing intensity. This results 
in a decreased transmittance of the signal, thus limiting the 
output intensity [14]. 

Fig.7(a) shows a plot of the input and output intensities of 
the grating consisting of a total of 150 layers simulated using 
both the Kerr and Duffing models. A TLM cell size ∆l is 
chosen such that a single wavelength in material at the Bragg 
frequency corresponds to 48∆l. A total of 1830 cells are taken, 
in which the grating extends from the 25th to the 1824th cell, 
and the remaining cells represent a linear material. In this 
simulation only the fundamental harmonic is extracted. The 
limiting behaviour of the structure can be observed but it does 
not agree well with the harmonic analysis [14] result for 
higher input intensities. Fig.7(b) shows the effect of including 
the higher order harmonics which are generated at higher 
input intensities in the output intensity calculations.  It can be 
seen that the inclusion of higher harmonics improves the 
agreement between the TLM results and the harmonic 
analysis at higher input intensities. Harmonic analysis is an 
approximate spectral method and consequently the agreement 
with the TLM results is not expected to be exact especially at 
high intensities where nonlinear effects are more significant. 
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Fig.8. (a) The dispersion characteristic of the real part of dielectric 
permittivity, and (b) magnified region of the dispersion curve around 
300 THz. 

 
Simulations are now carried out for a limiter consisting of a 

nonlinear dispersive material (Eq. (7)). The basic structure of 
the grating is the same as that of Fig.7, but the model now 
accounts for the dispersion of the susceptibility. The 
parameters for the material are ω0 = 2π x 1500 THz, which 
lies in the infrared region, and δ = 0.001 x ω0. The value of α 
is unchanged from Eq. (10). The value of ∆χe used is 1.20 
instead of 1.25 to ensure that the permittivity at the operating 
frequency of 300 THz is 2.25, which corresponds to an index 
of 1.5. This is necessary to ensure that all layers in the grating 
have a thickness equal to a quarter-wavelengthat 300 THz. 
The dispersion characteristic for the real part of dielectric 
constant is shown in Fig.8(a) and Fig.8(b) expands the region 
around 300 THz. 

Fig.9 shows simulation results for the optical limiter using 
the full Duffing model and compares it with results obtained 
using the harmonic analysis and the non-dispersive Duffing 
and Kerr models. The results from the non-dispersive Duffing 
and Kerr models in Fig.9(a) are those obtained by extracting 
only the fundamental harmonic and in Fig.9(b) by including 
the higher order harmonics. It can be seen that unlike the non-
dispersive Kerr and Duffing models that are significantly 
affected by the inclusion of higher order harmonics, the full 
Duffing model remains unchanged. The good agreement with 
harmonic analysis [14] is due to the fact that Duffing model  
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Fig.9. Comparison of the dispersive Duffing model with the non-
dispresive Kerr and Duffing models and results obtained using 
harmonic analysis when, (a) only the principal harmonic is included 
and (b) higher order harmonics are included. 

 
 

includes out of band loss and thus naturally attenuates higher 
order harmonics, which is often the case in practice. 

 
VI.  BISTABILITY OF THE KERR AND DUFFING 

MODEL 
 
The Kerr model for negative nonlinearity and Duffing 

model for positive Kerr nonlinearity exhibit bistable 
behaviour, as can be seen from Fig.6(a). This results in 
numerical instability for high input intensities. The way the 
instabilities are exhibited in the TLM implementation of the 
models is here explained for the case of the Kerr model for 
negative nonlinearity.  

The nonlinear polarisation equations for the Kerr model are 
implemented numerically in the TLM, and the roots of the  
nonlinear equations are found using a Newton-Raphson 
method  by which  the new refined  root Rnew and the previous 
root Rold are related by: 

Rnew ← Rold – f/f '                                  (12) 

Here the function  f ' is the derivative of the function  f which 
for the Kerr model is obtained as in [11].  
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Fig.10. The behaviour of the function f with respect to electric field 
for different input intensities for (a) the positive Kerr material (b) the 
negative Kerr material and (c) function f for two extreme cases of 
high input intensities. 
 

The possible variation of the function f with respect to the 
electric field at the particular node is plotted for different 
values of the input intensities in Fig.10(a,b). Fig.10(a) shows 
the typical behaviour of function f for the Kerr model for 
positive nonlinear materials. Two curves for input intensity of 
10GW/cm2 in Fig.10(a) depict the behaviour of the forcing 
function at two different nodes. It can be seen that a change in 
input intensity shifts the curve f up or down thus always 

giving a single root and resulting in a stable model. However, 
in the case of the Kerr model for negative nonlinear materials, 
and small input intensities, the curve has a different shape, 
with three potential zeros, as shown in Fig.10(b). The 
physically consistent solution is the one yielding the lowest 
value for the electric field. In the case of low input intensities 
it is possible to select the lowest solution and thus ensure 
stability. However, for high input intensities the curve shifts 
significantly up or down, as shown in Fig.10(c). It can be 
shown that the single zero for the electric field that can be 
obtained in these extreme cases, when replaced in the eq.(11), 
results in the dielectric constant lower than unity which is not 
physical. The behaviour of the function f for this case is 
shown in Fig.10(c) for a high input intensity of 10 GW/cm2. 
Numerically both cases shown in Fig.10(c) can occur. These 
instabilities are of similar nature for the Duffing model for the 
positive Kerr nonlinearity, as indeed observed in Fig.6(a). It is 
emphasized here that these numerical instabilities are 
consequences of the bistable properties of the Kerr or Duffing 
models and are not characteristic to the TLM method. 
 

VII. CONCLUSIONS 
 

This paper has presented different TLM models for 
dispersive and nonlinear materials. Two models for modelling 
nonlinear materials, the Kerr model and the Duffing model 
have been directly related and results compared for the case of 
nonlinear non-dispersive materials. The two models agree 
very well for the case of small signals. Both models, when 
applied to model particular nonlinear material can exhibit 
bistability. The full Duffing model can be used to simulate 
nonlinear dispersive materials and has been applied in this 
paper to the structure of the optical limiter. The results 
obtained using the Duffing model agree very well with those 
obtained using harmonic analysis due to the out of band loss 
that is intrinsically incorporated into the Duffing model. 
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