
June, 2005 Microwave Review

25

Software Architecture for
Circuit Simulation

Stephen Maas

Abstract — Engineering design and analysis (EDA) software
circuit simulators has traditionally focussed virtually exclusively
on the scientific calculations performed by the software. Software
technology, however, has matured to the point where it can
provide significant improvements in the ability of EDA software
to address the full requirement of the engineering design flow. In
this paper we describe some of those technologies.

Keywords — Circuit Simulation, EDA, Software.

I. INTRODUCTION

Engineering design and analysis (EDA) software has
traditionally addressed only the matter of “crunching numbers,”
the technical calculations that the software performs. The needs
of the RF and microwave industries go far beyond this,
however; they have evolved to the point where technical
capability, by itself, no longer meets the complex needs of
circuit and system designers. In order to achieve a high level of
design productivity, the architecture of the software
system—not just the analytical capabilities—must be
addressed. At the same time, software technology can enhance
the analytical capabilities of a circuit simulator. In this paper,
we show ways in which that can be accomplished.

Our long-term goal has been to make use of modern software
technology to enhance the ability of RF and microwave
engineers to design circuits and systems. We have implemented
many of the ideas expressed in this paper, in a commercial
software product [1]. It differs from other tools in that it is
designed to address design- flow issues as well as technical
capabilities. We believe that the use of modern software
technology, which has largely been ignored by both the research
and commercial communities, can do much to provide great
efficiencies in the design process.

II. DESIGN FLOW

By the term design flow, we mean the overall process of
designing a circuit, from conception through electrical design
and layout, to tape-out (in the case of monolithic circuits) or
fabrication (of hybrids). Design flows that exist commonly
throughout industry have significant, well-known, and
commonly-encountered bottlenecks.

For example, consider a simple function: electromagnetic
(EM) analysis of a part of a microstrip circuit. In traditional
simulators, the structure to be analyzed must be drawn in the

EM simulator’s drawing tool, analyzed, and the results, in the
form of scattering (S) parameters, returned to the circuit
simulator. If the circuit does not work, the process must be
repeated, and at each iteration, there is a genuine chance that
errors will occur. Throughout the process, there is no way to
view the results and ascertain that they are indeed valid. In
effect, the designer depends on human infallibility to guarantee
that the results are correct, and that the circuit simulated in the
EM simulator is precisely the one that finally is laid out. This is
a dangerous thing to do, especially when a large number of
circuit components must be simulated. The same problem
occurs in layout. Layout is frequently performed by a
technician, based on a sketch provided by the design engineer.
The circuit is copied at least twice, once by the engineer and
once by the technician, and ample opportunities exist for errors
to occur and for changes to be made that are not reflected in the
circuit description in the simulator. Usually, considerable
modification of the layout takes place, much of which may be
outside the control of the design engineer.

Design-flow issues such as these can be addressed though
software technology, as opposed to simulation technology.
There are two aspects to this. The first is to basic architecture of
the EDA software itself, designed as a complete system. The
second is the use of modern software technologies that are
available to the software designer. Many technologies that have
been developed in the past decade can ease the task of designing
high-frequency circuits and systems, and smooth the design
flow. The results are improved designs, reduced error, and
decreased cost.

III. SOFTWARE INTEGRATION

Initially, a circuit simulator consisted of an analytical
“engine,” plus modules to provide and process data (Fig. 1).

User Interface Comput ational
Data

Raw Result s
Post Processor

“Engine”

Fig.1. Architecture of a simple circuit simulator

This arrangement is fairly rigid in its ability to handle data,
and it quickly became obvious that much more versatile
methods were needed. It is axiomatic that tight integration

Stephen Maas is Chief Scientist of Applied Wave Research, Inc.,
1960 E. Grand Ave., Suite 430, El Segundo, California, USA 90245

Mikrotalasna revija Jun 2005.

26

between simulators can do much to smooth design flow and to
eliminate sources of human error. Attempts at such integration
began around 1990, and involved the use of supervisory
software to control the flow of data between dissimilar tools,
such as simulators, layout tools, and display modules (Fig. 2).
Such software had mixed success. It happens that the
supervisory function is surprisingly complex, often requiring
millions of lines of code, an, as a result, d software configured
in this manner often has been unreliable. However successful or
unsuccessful in terms of functionality, such software introduces
a layer of complexity that is not fundamentally necessary. It is
necessitated only by the need to interconnect existing,
dissimilar products.

Supervisor

Data

Simulator 3Simulator 2Simulator 1

Fig. 2. Use of supervisory software to control data flow for

integration of simulator components

Modern software technology offers ways seamlessly to
interconnect software developed by independent parties
without the need for supervisory software. One such technology
is component architecture, which we describe shortly. Of
course, the basic design of the software system, in the absence
of such special technologies, can also do much to provide
seamless integration between functions.

IV. ARCHITECTURAL CHARACTERISTICS

A. Object Oriented Design

Object-oriented design (OOD) involves the use of software
objects, sometimes called classes, which contain data and the
functions to manipulate those data. Those objects initialize
themselves on coming into scope and release allocated memory
when no longer needed. Objects can inherit other objects,
allowing for substantial code reuse. Object-oriented design
allows functions within the software system to be self
contained, so modifying one part has minimal effect on other
parts of the system.

OOD exists for dealing with the complexity of large software
systems, which otherwise might become unmanageable.
Without the use of such techniques, large software systems
become so complex, with so many interactions between parts,
that it is virtually impossible to modify one part and make
certain that the modifications have no unforeseen effect on
other parts.

It is important to emphasize that OOD is an architectural
method, not a programming language. Programming in C++ or

some other “object-oriented” language does not automatically
achieve these benefits; the underlying architecture, which is an
engineering design, must be successful. Conversely, it is
possible to create object-oriented architectures in programming
languages that are not designed to be object oriented; for
example, the original version of APLAC, an object-oriented
circuit simulator developed at Helsinki University of
Technology, was written in C.

B. Single-Database Architecture

In our architecture, all data are contained in a single database.
Circuit elements in different simulation functions are simply
different views of the same data. For example, a microstrip line
is a symbol in a schematic window, with a certain length and
width, but in the layout it is a GDSII cell showing the line. If the
length, for example, is changed in the schematic, the length
changes instantaneously in the layout, since both views access
the same data item. It is literally impossible for the layout to
become inconsistent with the circuit description. In this way,
human errors in the layout process are substantially reduced.

C. Component Architecture

Component architecture allows the integration of dissimilar
software at the object-code level. In Microsoft Windows, the
implementation is called COM, for Component Object Model.
COM works by defining interfaces and statistically unique
identifiers that allow one software object to access the
functionality of another. COM objects need not know anything
about their clients beyond the interfaces. Much of the MS
Windows operating system, and many Windows programs, are
implemented in COM. For example, the various parts of
Microsoft Office are COM clients.

COM is a binary standard, so COM objects can be written in
any programming. language. They are implemented in dynamic
link libraries (DLLs). COM objects need not even be located on
the host computer; they can be relocated on a network.

COM allows great versatility in linking third-party simulators
to a common application program interface (API). It is also
valuable in allowing users to write programs that operate the
API and its clients directly.

D. Component-Based Simulation Systems

Extensive use of COM interfaces allows a simulation systems
to be created from a user-selected mix of simulators and model
sets. We foresee the time, in the near future, when a user will be
able to create a custom simulation system, addressing his
particular needs, from a broad range of third-party simulators
and models. Already, users of our design environment can
employ various third-party electromagnetic simulators, which
integrate seamlessly with the rest of the system. This capability
is currently being extended to include circuit simulator
interfaces.

June, 2005 Microwave Review

27

A. Models

Models in our software do not reside within the simulator
code. They reside in DLLs separate from the main executable
and link to the executable through COM interfaces. This creates
many advantages. It eases the problem of model updates, since
only a DLL need be replaced, and it eases the management of
proprietary models, as they need only be distributed to users
who actually need them. In most simulators, proprietary models
must be collected, compiled into a single executable, and that
executable made available to all potential users. This creates a
substantial management task.

User-defined models are created in precisely the same
manner as our own models. A separate program, implemented
as a COM “wizard,” accepts the model description (names,
parameters, Y parameters or I/V equations, and so on) and
creates the C++ source code for the model. The code is then
compiled into a DLL and loaded into the appropriate directory.
The new model then loads, when the system is started, just as
any other model.

B. Direct Formulation Of Circuit Equations

In the past, circuit simulators used netlists to enter data. A
netlist is simply a list of components, excitations, and their
nodal connections. Later, schematic-capture modules were
included. Those modules allowed users to enter the circuit
graphically, then created a netlist, which was delivered to the
simulator. The use of schematic capture modules decreased the
probability of error in the design of large circuits, but also
created a data-flow bottleneck between the circuit description
and the simulator, because the simulator could not send data
directly to the schematic.

To avoid this problem we eliminate the netlist. Circuit
equations are formulated directly from the component database,
and the database is maintained in memory during this process.
This makes the formulation process very fast, and allows for
bidirectional data transfer between the simulator and the
database.

C. Dependency Hierarchy

All objects maintain a dependency hierarchy. When an object
(e.g., an EM structure) is modified, the information about the
modification ripples through the hierarchy and all objects
(specifically, subcircuits) are marked for reanalysis. Objects
that do not depend on that structure are not reanalyzed. This
prevents unnecessary computation, eliminating unnecessary
computational effort. This is especially important for structures
that require long analyses, such as electromagnetic simulations.

Figure 3 illustrates the dependency hierarchy for a circuit.
suppose, for example, that we want the S parameters of object
A, which might be a part of a larger circuit. Object B, another
subcircuit, has been modified. Because of the dependency
pointers, the system knows that object A, object B, and the two
objects between B and A, which depend on B, must be
reanalyzed. However, the objects to the left of A are unaffected
by the changes to B, and thus need not be recalculated.

A

B

Fig.3. Illustration of the dependency hierarchy.

The circles sepresent objects, which could be S parameter blocks,
subcircuits, EM structures, or similar parts of a design. The arrows

show the dependency.

When an analysis is performed, the simulation begins with
the user’s desired measurements. Subcircuits (or other objects)
to which the measurement applies are marked for analysis, and
finally their dependencies are similarly marked. The analysis
then proceeds in the logical manner, computing only the
elements that have been marked and ignoring the rest.

D. Caching and the Speed-Memory Trade-Off

We cache all data, and delete it only when it has become
invalid. This minimizes reanalysis, and is essential for such
functions as real-time tuning, described below.

There is a fundamental trade-off between speed and memory
use in any simulator. To minimize the use of memory, it is
essential to delete data as soon as it is not immediately needed,
and to reuse the memory space. Unfortunately, the recreation of
these data, which is frequently necessary, requires extra
computation time. If the data are saved, however, computation
time is reduced, but more memory space is used.

Because of the high cost of memory, simulators developed
before the mid 1990s invariably minimized memory use at the
expense of speed. Today, memory is cheap, so it makes much
more sense to use memory and minimize computation time.
Unfortunately, the decision to minimize memory of
computation is a fundamental one, and it is difficult to convert a
simulator designed to minimize memory into one that
minimizes computation.

E. Real-Time Tuning

It is possible to tune any linear circuit in our simulators in real
time, and many nonlinear circuits as well. This is accomplished
by reducing the untuned part of a circuit to a single admittance
matrix, at each analysis frequency. The untuned part is then
reduced and the results cached. This reduced admittance matrix
is then connected to the tuned elements and analyzed. The
dimension of the reduced Y matrix is simply the number nodes
of the tuned elements plus the number of ports and

Mikrotalasna revija Jun 2005.

28

measurement points. The speed of tuning then depends on the
number of circuit elements in the optimization, not on the size
of the original circuit. Thus, arbitrarily large circuits can be
tuned in real time. Figure 4 illustrates this process.

Untuned
Subcircuit

[Y
r
]

Complete
Circuit

[Y]

Tuned Elements
Fig.4. To provide real-time tuning, the untuned part of the circuit is

reduced to a single admittance matrix, analyzed, and the Y parameters
are cashed. This is performed automatically at the beginning of the
analysis. Then, only a reduced matrix needs to ne analyzed when

element values are modified by tuning.

F. Simulators as Objects

In our simulation architecture, simulators are viewed simply
as objects, like other objects, not as the “focal point” of the
system. Simulator objects can be used in a variety of ways
throughout the system. For example, suppose a nonlinear
device model requires S parameter data as part of its set-up
process. The model can invoke the linear simulator, have it read
a file of data, convert it to Y parameters, and store it. As another
example, suppose that a user wants to use an EM model that
does not have data for the desired dimensions in its database.
The model invokes the EM simulator, creates the necessary
data, and stores it in the database.

This creates an interesting and apparently backward situation
in which the model uses the simulator; normally, we expect the
opposite. The advantages of this arrangement, however, are
increased versatility and code reuse.

G. Use of Frequency-Domain Data in Time-Domain Simu-
lators

A perennial problem has been the need to use fre-
quency-domain data in time-domain simulation. A practical
approach is to create a LaPlace representation of an impedance
or admittance function. A number of technologies have been
developed to include LaPlace data in time- domain simulation,
including asymptotic waveform expansion [2] and numerical

LaPlace inversion [3]. Given the network function, it is also
possible to realize it as an RLC network. Whatever method is
used, it is necessary somehow to create a pole-zero
representation of the required data (e.g., a set of measured S
parameters or the results of and EM simulation).

We use a practical method in which we create a network
function of the form

F s()
cn

s pn–

n 1=

N

∑ d sh+ +=

(1)

from calculated frequency-domain data. This process can be
used with S parameter blocks, transmission lines, EM
simulations, and similar frequency-domain data. The terms cn
and pn are residues and poles, respectively, and d and h are real.
This is easily converted to a time-domain response. Iterative
and recursive numerical techniques are used for finding cn, pn,
d, h.

V. CONCLUSIONS

We have shown that attention to software architecture, in
contrast to analytical capability, can do much to enhance the
design flow of an engineering organization. This is
accomplished by tight integration of simulator functions,
through the use of modern software design techniques. The
result is improvements in engineering productivity, cost, and
time to market of engineered products.

ACKNOWLEDGEMENT

The author would like to thank his colleagues at Applied
Wave Research and other institutions, too many to list
individually, whose work and insights contributed to the
information in this paper.

REFERENCES

[1] Microwave Office, Applied Wave Research, Inc. 1960 E.
Grand Ave., El Segundo, CA 90245, USA.

[2] V. Raghavan, J. E. Bracken, and R. A. Rohrer,
“AWESpice: A General Tool for the Accurate and
Efficient Simulation of Interconnect Problems,” Proc. 29th
ACM/IEEE Design Automation Conf., 1992, p. 87.

[3] J. Vlach and K. Singhal, Computer Methods for Circuit
Analysis and Design, 2nd. ed., Chapman & Hall, New
York, 1994.

	INTRODUCTION
	Design Flow
	Software Integration
	Architectural Characteristics
	Object Oriented Design
	Single-Database Architecture
	Component Architecture
	Component-Based Simulation Systems
	Models
	Direct Formulation Of Circuit Equations
	Dependency Hierarchy
	Caching and the Speed-Memory Trade-Off
	Real-Time Tuning
	Simulators as Objects
	Use of Frequency-Domain Data in Time-Domain Simu˜lators

	Conclusions
	References

